The objective of this paper is to analyze temporal and seasonal trends of air pollution in Bahrain between 2006 and 2012 by utilizing datasets from five air quality monitoring stations. The non-parametric and robust Theil-Sen approach is employed to study quantitatively temporal variations of particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3). The calculated annual concentrations for PM10 and PM2.5 in Bahrain were substantially higher than recommended World Health Organization (WHO) guideline standards. Results showed increasing trends for PM10, PM2.5, and SO2 whereas O3 and its precursor NO2 showed decreasing behavior. The general increase in air pollution trends is in agreement with prediction of air pollution models for Middle East region due to economic growth, industrialization, and urbanization. The significances of long-term trends were examined. Additional to actual (unadjusted) trends, meteorological adjusted (deseasonalized) trends and seasonal trends were quantified. The box-plot analysis visually illustrated monthly variations of key air pollutants. It showed that only PM10 and PM2.5 exhibited seasonal pattern, and their concentrations increased during summer and decreased during winter. The effects of ambient air temperature, relative humidity, wind speed, and rainfall on particulate matter (PM) concentrations were further investigated. The Spearman correlation coefficient results demonstrated significant negative correlation between relative humidity and PM concentrations (− 0.595 for PM10 and − 0.526 for PM2.5) while significant positive correlation was observed between temperature and PM concentrations (0.420 for PM10 and 0.482 for PM2.5). © 2018, Saudi Society for Geosciences.